If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=-10x+84
We move all terms to the left:
6x^2-(-10x+84)=0
We get rid of parentheses
6x^2+10x-84=0
a = 6; b = 10; c = -84;
Δ = b2-4ac
Δ = 102-4·6·(-84)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-46}{2*6}=\frac{-56}{12} =-4+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+46}{2*6}=\frac{36}{12} =3 $
| -1/4x+29=17 | | 35+35=x+30+20 | | 35+35=x+30+2 | | -1/3x+2/3=-7/9 | | 115=7x | | 4g=80 | | x+14/2=8 | | 35x=27 | | 1/3(x−9)=2x+7 | | 5x+6x+-4=-70 | | 45+2.50x=3.75 | | 3x-9÷2=x+4 | | 6x-3(2x-8)=-x-10 | | 3x-9=0.5x+2 | | −5(−20(10)−3)−11=20(5(x+1)−26 | | 1/6(z+2)=2/3 | | 16(z+2)=23 | | 10+9x-3(x+7)=1 | | 2x+5=3x^2+2x=7 | | 5x+18+20-3x=48 | | 12u+8=20 | | 3x^2−4=8 | | 16+2x=4(x-2) | | -10x+2=-84 | | x12=8 | | C=3x+40 | | −5(−20x−3)−11=20(5x+1)−26 | | 6(x=-1)=6x-1 | | 5y-14-12=154 | | −4(2x−4)−2x−2= −36 | | a/9+8=12 | | 7q+18=18 |